University Institute of Engineering & Technology

Recognised Under Section 2(f) and 12B of UGC)

Kurukshetra University, Kurukshetra Roll No.-2.5 | 80 | 2 |

THEORY EXAMINATION - DECEMBER 2019

TIME- 3 HRS

B. Tech (Electronics & Communication Engineering) 3rd Semester

M.M. -75

COURSE NO.: EC-213

COURSE TITLE: Network Theory

PART-A (15 Marks)

W	hat is incidence matrix?
lı	n an electric circuit, the dual of resistance is:
1 '	a) conductance (b) inductance c) capacitance (d) open circuit
1772	If v_z changes from 2 V to 4 V at $t = 0$, we may express v_z as:
	(a) $\delta(t)$ V (b) $2u(t)$ V
	(c) $2u(-t) + 4u(t) V$ (d) $4u(t) - 2 V$
]	Define the transient response of a circuit.
	If the input to a linear system is $\delta(t)$ and the output is $e^{-2t}u(t)$, the transfer function of the system is: (a) $\frac{1}{s+2}$ (b) $\frac{1}{s-2}$ (c) $\frac{s}{s+2}$ (d) $\frac{s}{s-2}$
8	A zero of the transfer function
	$H(s) = \frac{10(s+1)}{(s+2)(s+3)}$
	is at
	(a) 10 (b) -1 (c) -2 (d) -3
7/	The impedance of a 10-F capacitor is:
_	(a) 10/s (b) s/10 (c) 1/10s (d) 10s
	In the circuit of Fig.1., draw the Laplace equivalent circuit.

PART B (20 Marks)

Answer the following questions, one from each unit & all question carrying equal marks.

YINYYM	5x4=20
2 Derive and avaloin the Ct. P	20
2 Derive and explain the Step Response of RC circuit.	5
UNIT-II	
Determine the transfer function $H(s) = \frac{V_0(s)}{I_0(s)}$ of the circuit as shown in Fig. 2.	5 s
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$V(s) \stackrel{+}{=} \qquad \qquad \begin{cases} s \\ 2 \Omega \leqslant V_o \\ - \end{cases}$	
	8

	Fig 2	
1	Determine the 7	
	Determine the Z parameters of the circuit as shown in Fig. 3.	5
	16 Ω	
	0	
	. ≩12Ω	-
	0-	
		1
	Fig 3	
1/		
6	UNIT-IV	
	Explain the concept of causality & stability in network synthesis.	5

PART-C (40 Marks)

Students are required to attempt <u>four question</u>, by selecting <u>at least one</u> <u>question from each unit</u> & all question carrying equal marks. 10x4=40

