B. Tech. Ecs 3rd for Dec. 2017

University Institute of Engineering & Technology

(Recognised Under Section 2(f) and 12B of UGC)

Kurukshetra University, Kurukshetra

101

Roll No. -

THEORY EXAMINATION - DECEMBER 2017

B.TECH - ECE

SEMESTER - III

TIME - 3 Hrs.

M.M. - 75

COURSE NO. - ECE 201

SIGNALS AND SYSTEMS **COURSE TITLE -**

Note: All questions in Part-A and Part-B are compulsory. Attempt any four questions from Part-C selecting at least one from each unit.

PART-A (15 Marks)

15x1=15 $Q.\ No.-1$ Answer the following questions carrying one mark each.

)	Define signum function?	
)	The time derivative of unit step function is	
i)	Check the stability for the system with output $y(t)=t * x(t)$.	
<i>y</i>)	Explain time shifting property.	
)	Find even component of $x(t) = e^{-t} \sin(t)$.	
	Define Autocorrelation.	
)	The condition $h(t)=0$ for $t<0$ must be satisfied by the system that is	
i)	a) Memoryless b) Causai c) 2 -	
iii)	The Convolution operator is i) Commutative ii) Associative iii) Both iv) None of these.	
()	The coefficient X _k for DTFS are periodic 5	
)	Write the orthogonality condition for two signals $x(t)$ and $y(t)$ over the interval $[0,T]$.	
i)	The fourier transform of 1 is	444
ii)	Write the differentiation property of fourier transform.	
iii)	The DTFT of x[n] is	
iv)	Region of convergence of a anti-causal system is i) entire s-plane ii) right half of s-plane iii) left half of s-plane iv) does not exist	
	i) entire s-plane ii) right half of s-plane iii) left half of s-plane iv) does not exist. Define nyquist interval.	200

PART-B (20 Marks)

	1 5
	UNIT-I Write the condition for periodicity for sum of signals. Also check whether the signal $x(t)=[\sin{(2t+\pi/3)}]^2$ 5
2	Write the condition for periodicity for sum of signals. Also check whether
6 6	$x(t)=[\sin(2t+\pi/3)]^2$ 5
	UNIT-II
3	Explain Probability density function with properties and their proof.
	YINTY YYY
4	Determine the exponential fourier series for $x(t) = e^{-2t}$ for the interval $[0, \pi]$
1	UNIT-IV Find the laplace transform for $x(t) = e^{-3t} u(t) - e^{2t} u(-t)$. Also check the causality and stability for $x(t)$.
5	Find the laplace transform for $x(t) = e^{-3t} u(t) - e^{2t} u(-t)$. Also check the east
	for x(t).

PART-C (40 Marks)

	UNIT-I	
	UNII-I	05
6 (a)	Explain single single/2 nl is energy signal or power signal.	05
6 (b) 7(a)	The following system have input x[t] and output y[t].	06
,	$v[t] = \int_{-\tau}^{t} x(\tau) d\tau$	
	Determine whether the system is a) Stable b) Causal c) Linear	
50.	Lability managery for systems	04
7(b)	UNIT-II	
	The second unit step response for a system with input v(t) and output	10
8	Explain impulse response and unit step response for a system with input $x(t)$ and output $y(t)$.	
9	The Probability density function of a random X is $p(x) = (1-x)$ for $1 \le x \le 2$. Find the mean, variance and standard deviation.	10
	UNIT-III	
10	after sampling $x(t) = \cos(200\pi t)$ if sampled at a rate of fs= 250 Hz and also determine its sampling interal.	
11	Write the dirichlet conditions for Fourier series. Determine the fourier series coefficients for signal (i) $x(t+to)$ (ii) $d^2x(t)/dt^2$ (iii) $x(2t)$ when $x(t)$ is periodic signal with time period T and fourier coefficient X_n .	10
	UNIT-IV	
12	Explain i) frequency shifting ii) Time scaling iii) Convolution iv) Differentiation property of Fourier Transform with proof.	10
13	The unit response of an LTI	
3	The unit response of an LTI system is $s(t)=e^{-t}u(t)$. For certain input $x(t)$, output $y(t)=4e^{-t}u(t)+u(t)$. Determine input $x(t)$.	10

COURSE

No Pa