B. Tech. CSE 3rd Se Dec. 2017

2(1)

100

University Institute of Engineering & Technology

(Recognised Under Section 2(f) and 12B of UGC)

Kurukshetra University, Kurukshetra

Roll No. -

THEORY EXAMINATION – DECEMBER 2017

TIME – 3 Hrs.

B.TECH - ECE

SEMESTER - III

M.M. - 75

COURSE NO. - ECE-203

COURSE TITLE - ELECTRONIC DEVICES

Note: All questions in Part-A and Part-B are compulsory. Attempt any four questions from Part-C selecting at least one from each unit.

PART-A (15 Marks)

O. No. – 1 Answer the following questions.

15x1=15

(i)	Discuss the applications of Hall Effect.
(ii)	Define the term early effect in BJT's.
(iii)	Draw the low frequency model for FET's.
(iv)	Classify the capacitances of PN junction diode.
(v)	Define Transconducatance in FET's.
vi)	What is meant by Voltage Regulation?
vii)	Plot the Transfer characteristics of JFET.
viii)	Current flow in a semiconductor depends upon what type of phenomenon?
ix)	When the transistor is operated in active region the collector junction is reverse biased but the collector current is quite high. Why?
x)	List the applications of Tunnel diode.
xi)	Write the voltage and current equations of hybrid parameters.
xii)	Define Quiescent point.
xiii)	Give the total expression of Diffusion Current Density.
(xiv)	Write two main differences between BJT and FET?
(xv)	Draw the equivalent circuit of an ideal zener diode in the breakdown region.

PART-B (20 Marks)

way.	5
UNIT-1 is the help of energy	
in a primetion diode with the	
Derive the expression of built in potential barrier in p-in june.	15
Band diagram. UNIT-II	
$R_{\rm L} = 10002$ and $R_{\rm L} = 10002$ and $R_{\rm L} = 10002$	
In a zener diode shunt voltage regulator $V_{in} = 40 \text{ V}$, $K_s = 300 \text{ V}$	
Voltage is 20V. Calculate:	
Voltage drop across foad resistance.	
ii) Current through load resistance.	
1 diada	
UNIT-III	5
Discuss the high frequency limitations of BJT'S.	5
UNIT-IV	
	2
Explain the following terms:	
i) Pinch off Voltage	
ii) FET Parameters	
	UNIT-I Derive the expression of built in potential barrier in p-n junction diode with the help of energy Band diagram. UNIT-II In a zener diode shunt voltage regulator V _m = 40V, R _s =50Ω, R _L = 100Ω and breakdown Voltage is 20V. Calculate: i) Voltage drop across load resistance. ii) Current through load resistance. iii) Current through zener diode. UNIT-III Discuss the high frequency limitations of BJT'S. UNIT-IV Explain the following terms: i) Pinch off Voltage ii) FET Parameters

PART-C (40 Marks)

	UNIT-I	10
	Derive the expression for drift current, current density, conductivity and resistivity in	10
5	extrinsic semiconductors.	10
	· aflangth 75 mm Willing 4 min and themes	
	i) Electron and holes drift velocities ii) Conductivity of intrinsic germanium if intrinsic carrier density is 2.5 * 10 ¹⁹ / m ³	
	iii) Total current Mobility of electrons is 0.38 m ² / V-s and holes is 0.18 m ² / V-s.	
	ONIT-II	
	By using hybrid parameters derive the expressions for all the parameters of common	10
	emitter transistor amplifier.	
,	Write a brief note on: i) Hetro-junction Transistor	10
	i) Hetro-Junction Transistor ii) Hybrid pi model of Transistor	
	UNIT-III	1
10	Explain in detail two terminal MOS structure. How the working of a MOSFET can be compared by the capacitor. Draw the energy band diagrams when negative voltage is applied at the gate terminal.	10
1	Plot and explain the ideal current voltage relationship of FET's. Also explain the effect of feedback in high frequency model of FET's.	10
	UNIT-IV	
2	Distinguish between series and shunt voltage regulators. Explain the working of Op-Amp series voltage regulator.	10
3	With the help of block diagrams explain the working of Linear power supply and Switched mode power supply.	10