University Institute of Engineering & Technology (A Constituent Autonomous Institute) Kurukshetra University, Kurukshetra

THEORY EXAMINATION - DECEMBER 2015

M.M. 75

g 0

5

ROLL NO.....B. Tech (Electronics & Comm Engg) 3rd Semester
COURSE TITLE: Network Analysis & Synthesis TIME 3 HRS

PART-A (TIME 30 MINUTES)

If	The following multiple choice questions v_s changes from 2 V to 4 V at $t = 0$, we may	5
ex	express v_z as:	
(a	a) $\delta(t)$ V (b) $2u(t)$ V	
	c) $2u(-t) + 4u(t) V$ (d) $4u(t) - 2 V$	
,	(-)-m(i) = 2 v	
li	the roots of the characteristic equation of an RLC	\dashv
C	ircuit are -2 and -3 , the response is:	
	a) $(A\cos 2t + B\sin 2t)e^{-3t}$	
	$(b) (A + 2Bt)e^{-3t}$	
	$(c) Ae^{-2t} + Bte^{-3t}$	
. 1	(d) $Ae^{-2t} + Be^{-3t}$	
1	where A and B are constants.	
	In a series RLC circuit, setting $R = 0$ will produce:	
	(a) an overdamped response	-
	(b) a critically damped response	1
	(c) an underdamped response	1
	(d) an undamped response	7
4	In an electric circuit, the dual of resistance is:	
	-	
1	(a) conductance (b) inductance (c) capacitance (d) open circuit	
5	The voltage through a resistor with current $i(t)$ in the	
	s-domain is $sRI(s)$.	
1	(a) True (b) False	
6	If the input to a linear system is $\delta(t)$ and the output is	
-	If the input to a linear system is $e^{-2t}u(t)$, the transfer function of the system is:	
	5 (4) 5	
	(a) $\frac{1}{s+2}$ (b) $\frac{1}{s-2}$ (c) $\frac{s}{s+2}$ (d) $\frac{s}{s-2}$	
7	The impedance of a 10-F capacitor is:	-2
	(a) $10/s$ (b) $s/10$ (c) $1/10s$ (d) $10s$	
8		
8	When port 1 of a two-port circuit is short-circuited, $I_1 = 4I_2$ and $V_2 = 0.25I_2$. Which of the following	
	$I_1 = 4I_2$ and $V_2 = 0.23I_2$. The is true?	
	$a_{\lambda \gamma} = 16$	
	(a) $y_{11} = 4$ (b) $y_{12} = 10$ (c) $y_{21} = 16$ (d) $y_{22} = 0.25$	
9	A two-port is described by the following equations: A two-port is described by the following equations:	
-	A two-port is described by the following equations: $V_1 = 50I_1 + 10I_2$	
	$V_1 = 30I_1 + 10I_2$ $V_2 = 30I_1 + 20I_2$	
	Which of the following is not true?	-
	(a) $z_{12} = 10$ (b) $y_{12} = -0.0143$	

	Callowing is
10	If a two-port is reciprocal, which of the following is not true?
1	(a) $z_{21} = z_{12}$ (b) $y_{21} = y_{12}$
	(c) $h_{21} = h_{12}$ (d) $AD = BC + 1$
11	For the single-element two-port network in
	Fig. 1, z_{11} is: $\geq 10 \Omega$
	(a) 0 (b) 5 (c) 10
	(4) 20
	Fig. 1
12	Γ_{-} the sign of the standard line 10Ω
	For the single-element two-port network in Fig. 2, h ₂₁ is:
	(a) 0 (b) -1 (c) 10
	(d) 20
	00
	Fig. 2
13	A zero of the transfer function
	$\frac{10(s+1)}{s}$
	$H(s) = \frac{10(s+1)}{(s+2)(s+3)}$
	is at
	(a) 10 (b) -1 (c) -2 (b) -2
14	-1 . $(0) -2$. $(1) -3$
	$Z(s) = 10 \frac{(s^2 + 4)(s^2 + 16)}{(s^2 + 16)}$ is a valid driving
	is a valid driving point impedance of an LC network.
15	For a count
	series arm capacitance (C) and show of f _c =4KHz and design in
-	series arm capacitance (C) and shunt arm inductance (L) are given as $ (a) C = 0.033 \mu F, L = 11.937 mH $
-	(c) C= 0.000
	(b) C = 11.937
	(d) $C = 11.937 \mu F$, $L = 11.937 mH$
	, L= 0.033mH

University Institute of Engineering & Technology (A Constituent Autonomous Institute) Kurukshetra University, Kurukshetra THEORY EXAMINATION – DECEMBER 2015

COURSE NO.: ECE-205

B. Tech (Electronics & Comm Engg) 3rd Semester
COURSE TITLE: Network Analysis & Synthesis PART B &C (TIME 2H 30 MIN)

PART-B

CTION	-I: All compulsory 2 guestion from each Unit	<u>20</u>
	TINITE Y	
$-$ T $_{0}$	UNIT-I btain the incidence matrix of the graph shown in Fig.	
	The graph shown in Fig.	2.5
	Derive and explain the step response of RC circuit.	2.5
	UNIT-II	
	Determine $i(t)$ in the circuit of Fig. by means of the Laplace transform. $u(t) \stackrel{\text{1}}{=} 1 \text{ F}$	2.5
	Discuss the concept of poles and zeros of network functions.	2.5
	UNIT-III	2.5
	Determine the z parameters for the circuit in Fig. $\begin{array}{c c} 20 \Omega & 30 \Omega \\ \hline & & & & & & & \\ & & & & & & & \\ & & & & $	
7	Determine the y parameters for the two-port shown in Fig. $\frac{2i}{4\Omega}$	2.5
	UNIT-IV	* - TAN
8	Explain the concept of Hurwitz Polynomials.	2.5
	Explain the concept of causality & stability in network synthesis.	2.5

