Code 08

ELECTRICAL ENGINEERING

Time: 3 Hours

Maximum Marks: 150

Note: Attempt five questions in all. All questions carry equal marks. Q.No.1 is compulsory. Answer any two questions from Part-I and two questions from Part-II. Parts of the same question must be answered together and must not be interposed between answers of other questions.

Q.1. Write critical notes on any four:

- a. UJT triggering circuit of thyristors
- b. Phase and frequency modulation
- c. Multiplexers and decoders
- d. Dielectric behavior of materials
- e. Data acquisition system
- f. Stepper motor

(7.5x4=30)

PART-I

- Q.2.
 - a).i) Following measurements are obtained on a two terminal network,
 - A) when a voltage of $100 \ge 0^0$ volts applied at input port with output port open, $I_1=20 \ge 0^0$ amps and $V_2=25 \ge 0^0$ volts

B) when a voltage of $100 \ge 0^0$ volts applied at output port with input port open, $I_2=10 \ge 0^0$ amps and $V_1=50 \ge 0^0$ volts.

I/TN-EB-12

1

	Write loop equations for the network and determine driving point and transfer impedance.	the (10)
	ii) The driving point impedance of a network is given by	
	$Z(S) = \frac{(S^3 + 4S)}{(S^2 + 2)}$, realize the network.	(5)
b)	Explain the construction, working principle and applications of brushless dc motors.	(15)
Q.3.		
a)	A current sheet $K = 9\widehat{a_y}$ Amps/meter is located at the interface between region1, Z<0 with $\mu r_1 = 4$ region 2, Z>0 with $\mu r_2 = 3$. Find $\overline{H_1}$ given the =14.5 $\widehat{a_x} + 8\widehat{a_z}$	Z=0, and $\overline{E_2}$ (15)
b) Discuss the following	
	i) Emitter-coupled logicii) 4-bit SISO registers	(7) (8)
Q.4		
a) Explain the different working modes of differential amplifier.	(15)
b). i) Explain the static characteristics of thyristor.	(10)
,	ii) A single phase fully controlled bridge convert supplied from 220V ac supply. Assuming the load cu to be continuous, obtain the mean load voltage for f angle of 45°. Assume that thyristor voltage drop i volts. What is the PIV rating for each thyristor.	er is rrer t firing s 1.5 (5)

I/TN-EB-12

2

PART-II

Q.5.

- a) Explain the basic concepts of memory interfacing for 8-bit microprocessor. (15)
- b) Explain the working principle of a ramp type digital voltmeter. (15)

Q.6.

a) (i) Use Routh's criteria to investigate the stability of the open loop system given by transfer function,

$$G(s) = \frac{k}{S(S+2)(S^3+3)}$$
(10)

(ii) Determine the break- away point of the given transfer function,

$$G(s)H(S) = \frac{k}{S(S+2)(S^2+2S+2)}$$
(5)

b) Explain the wind energy conversion systems and their integration into electrical grid. (15)

Q.7.

- a) Explain the differential protection of a three phase transformer. Mention the impact of tap changing and inrush current on the operation of differential relay protection. (15)
- b) What is the concept of power system stability? Explain in brief, the various stability concern of power system. (15)

I/TN-EB-12

3